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ABSTRACT 

In this paper, the problem of trajectory optimization in tracking the location of 
surface moving targets by measuring the side angle alone is studied. The 
performance of target tracking with side angle alone depends on the stability of the 
target position in the target observer's motion path or the optimal observer 
maneuver. First, the modeling of the path control problem is performed by the 

kernel-scalar matrix method. Then, by analyzing the L2 interest rate, the control law 
is obtained for moving independently of the initial conditions. The advantages of 
the proposed modeling are maximizing the delay limit for the stability of the entire 
maneuver time, calculating the control rule at the start of the maneuver and high 
flexibility in applying the travel restrictions. The efficiency of the method presented 
by simulation with scalar kernel matrix method with control methods of delayed 
systems with distributed delay is shown and compared by recent references. 
Performance is also evaluated in different scenarios and its reliability is checked. 
This method is also used in the practical problem of tracking a surface vessel by 
submarine. 

Keywords: Exponential stability, L2 interest rate analysis, Infinite distributed delay, 
Scalar kernel, Side tracking alone

 
Introduction 

Target tracking In situations where there is a limit to 
measuring target parameters with active sensors, it is 
done only by measuring the angle of the target by 
inactive sensors, which is called BOT Bearings-Only 
Tracking. It has many special applications in military and 
commercial industries [1]. The BOT problem is 
categorized according to the number and position of the 
senses, the number of targets, and the motion 
dimensions of the targets. In many practical problems, 
the initial position and condition of the target is also 
unknown in the BOT problem [2]. Also, pursuit with the 
least maneuver due to the limitations and obstacles of 
the observer's movement path, is one of the basic 
requirements of this special practical issue in practice. 
High maneuverability produces acoustic noise and 
greater observer visibility [3]. In recent decades, the issue 
of BOT and TMA Target Motion Analysis has been a 

topic of interest for researchers [4]. This has been used 
for acoustic issues (submarines with passive sonar), 
electromagnetic equipment (ESM sensors), and optical 
equipment (for satellites and infrared cameras). Much 
research has been done on various types of BOT issues, 
which can be referred to the important books on this 
subject in references [5-7]. 
The standard version of side motion analysis (BOTMA) 
consists of two animations on a two-dimensional surface 
in which the observer (pursuer) and the target move at a 
quasi-linear velocity at a constant speed and direction 
during tracking time. Thus, the meaning of classical 
BOTMA is the calculation of four parameters, including 
the two coordinates of geographical position, speed and 
course of movement (target), which is done by collecting 
and measuring the target side by the observer of the 
observer [8]. Under this classical assumption, if the 
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velocity vector is constant, the observer cannot identify 
the target and therefore the problem is not stable. In the 
last decade, the effect of maneuvering on increasing 
target stability in BOT has been discussed. When 
stability is definite, due to the combination of side 
measurement with error, BOT accuracy is highly 
dependent on maneuver [9]. Reference [10] shows that 
maximizing the delay limit of the BOT problem is 
achieved by the interaction of two reciprocal conditions, 
one is the reduction of the distance from the observer to 
the target and the other is the orthogonal motion of the 
observer on the target line of view. In some cases, 
researchers have used approximate s-track maneuvers to 
meet the stability requirement of these delayed 
distributed systems with extra-delayed delay, but this, in 
addition to generating acoustic noise, incurs additional 
path costs [11].  
The main tasks of maneuver control are done to position 
the target (stationary target). In the reference [12], the 
movement of the carrier on the two straight paths of the 
line has been investigated and the effect of the 
movement path has been compared. Assuming a fixed 
course in the first step of the route, the delay rate course 
is calculated in the second step of the route in order to 
maximize the accuracy of calculating the target distance 

by increasing the L2 gain. In the reference [13], for a 
positioning problem, by defining the Lyapunov function 
of the proximity constraint, the problem of standard 
kernel matrices for the BOT problem is presented. In 
[14], using change calculation methods (indirect 
methods), the closed-loop system for optimal maneuver 
(dependent on the input parameter of the coefficient of 
approximation) in the positioning problem (static target) 
has been studied. In recent references, the necessity of 
establishing these two reciprocal conditions has defined 
the path of the observer in applied problems as a spiral 
(Figure s). The importance of this method, in addition 
to the simplicity of online calculations, is that the 
calculations do not depend on the uncertainty of the 
initial conditions. The cost function of this method by 

L2 gain is the long and undesirable path of the observer 
maneuver, the possibility of instability in some directions 
of movement such as the target, and the non-
optimization of the motor end time relative to the 
maneuver mud [15]. The minimal trajectory of the 
observer in the direction of approaching the target, in 
addition to improving the condition of the infinitely 
distributed delay limit in the far-reaching scenarios of the 
target, causes an accurate estimate of the end time of the 
maneuver. As a comprehensive example of the indirect 
solution method, in the reference [16], by forming a 
Hamiltonian boundary value (HBVP) problem and 
using the theory of variance calculus, a relationship 
between the direction of the observer and the angle of 
the target in the optimal path is presented. Is. The 
difficulty of presenting the final boundary conditions 
and knowing the initial position is one of the limitations 
of this method. On the other hand, methods that have 
examined the timing of maneuvers recommend 
approaching the target at the beginning of the route and 
bypassing the target at the end of the route [17]. 
Compared to existing studies, this is the main 
contribution of this article. In the second part, the 
definitions and modeling of the BOT problem are 
stated. In the third step, the exponential stability of 

distributed delayed systems with infinite delay and L2  
gain analysis by standard kernel matrices in the form of 
Lyapunov function and LMI extraction is described. In 
the fourth section, in fact, the simulation of the article is 
presented, and finally, to show the correctness of the 
theoretical results and the effectiveness of the 
algorithms, in the fifth section and the final section of 
the article, the general results of the article are stated. 

Definitions and Modeling of the BOT Problem 

Figure 1 shows the two-dimensional geometry of the 
BOT problem [18]. The variables used in the article 
according to Figure 1 are:

 

 
    Figure 1.  Two-dimensional geometry of the BOT problem [18]  

 [
 D

O
I:

 1
0.

47
17

6/
sj

is
.5

.2
.1

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 s

jis
.s

rp
ub

.o
rg

 o
n 

20
25

-0
7-

04
 ]

 

                               2 / 7

http://dx.doi.org/10.47176/sjis.5.2.1
http://sjis.srpub.org/article-5-198-en.html


Sara Mahmoudi Rashid 

Page | 3 
 

 
General Problem BOT Estimation of the path of the 
target (speed and position of the target) is defined by 
measuring the sensitive data on the maneuverable side 
while maneuvering (sensitive carrier). Next, the 
Cartesian coordinate system is used to mathematically 
define the BOT problem in the target mode with 
constant speed and direction (without maneuver). 
Therefore, objective modeling and BOT interception 
problem equations with nonlinear measurement 
function of BOT problem at t moment are defined as 
the following relations [19]. 
The target state vector is defined by the linear velocity 
Vt and the initial vector V0 by equations (1) and (2). 

(1) 𝑥𝑘
𝑡 = [𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 , 𝑥̇𝑘

𝑡 , 𝑦̇𝑘
𝑡]𝑇  

(2) 𝑥𝑘
0 = [𝑥𝑘

0, 𝑦𝑘
0, 𝑥̇𝑘

0, 𝑦̇𝑘
0]𝑇  

As a result, the relative motion vector of the target is 
obtained as (3). 

(3) 𝑥𝑘 = 𝑥𝑘
𝑡 − 𝑥𝑘

0 = [𝑥𝑘 , 𝑦𝑘 , 𝑥̇𝑘 , 𝑦̇𝑘]
𝑇  

The dynamic equations of the target state space, at a 
constant speed, assuming the acceleration is unknown 
and applying it to the model as Gaussian independent 
noise (4) are as follows. 

(4) 𝑊𝑘 = [𝑤𝑥𝑘
, 𝑤𝑦𝑘

]
𝑇

= [𝑥̈𝑘 , 𝑦̈𝑘]
𝑇  

The mode transition matrix of the model is equal to F 
and the vector U is accurately measured with the 
navigation sensations by Equation (5). 

(5) 

𝐹𝑘 = ∇𝑥𝑓(𝑥𝑘)|𝑥𝑘=𝑥̂𝑘−1
= [

1    0    𝑇    0
0    1    0    𝑇
0    0    1    0
0    0    0    1

] , 𝐺𝑘 =

[
 
 
 
 
𝑇2

2
0

0
𝑇2

2

𝑇 0
0 𝑇]

 
 
 
 

  

(6) 

𝑈𝑘−1,𝑘 = [

𝑢𝑘1

𝑢𝑘2

𝑢𝑘3

𝑢𝑘4

] =

[
 
 
 
𝑥𝑘

𝑜 − 𝑥𝑘−1
𝑜 − 𝑇𝑥̇𝑘−1

𝑜

𝑦𝑘
𝑜 − 𝑦𝑘−1

𝑜 − 𝑇𝑦̇𝑘−1
𝑜

𝑥̇𝑘
𝑜 − 𝑥̇𝑘−1

𝑜

𝑦̇𝑘
𝑜 − 𝑦̇𝑘−1

𝑜 ]
 
 
 

  

Also, the nonlinear equations of the measurement vector 
with the mean of zero and the unknown initial values of 
the BOT problem are (7). 

(7) 𝑥0 = 𝑟0 ⋅ sin(𝑧0) , 𝑟0 = √𝑥0
2 + 𝑦0

2

𝑦0 = 𝑟0 ⋅ cos (𝑧0)
  

 
It is noteworthy that the nonlinear equations of 
measurement of the target side are considered as (8). 

(8) 𝑧𝑘 = ℎ(𝑋𝑘) + 𝑣𝑘 = 𝛽𝑘 + 𝑣𝑘

ℎ(𝑋𝑘) = tan−1 (
𝑥

𝑦
)

𝑥 = 𝑟 ⋅ sin (𝑧)
𝑦 = 𝑟 ⋅ cos (𝑧)

𝑟 = √𝑥2 + 𝑦2

  

Exponential stability and interest analysis of 𝐋𝟐 
system 

The aim is to find characteristics to prove the 

exponential stability and L2 interest rate analysis of the 
system, which in this article deals with integral kernels. 
Consider system (9). 

(9) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐴𝑑 ∫  
∞

0
𝐾(𝜃)𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃  

Assume that the kernel satisfies (10) and is A or A0 
Hertz. 

(10 ) 𝐴0 = 𝐴 + 𝐴𝑑 ∫  
∞

0
𝐾(𝜃)𝑑𝜃  

To analyze the exponential stability of a high system with 
a convergence rate δ <δ_0, the Lyapunov function (11) 
is proposed. 

𝑉(𝑡) = 𝑉𝑃(𝑡) + 𝑉𝐺(𝑡) + 𝑉𝐻(𝑡), 𝑉𝑃(𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)        (11) 
𝑉𝐺(𝑡) = ∫  

∞

0
∫  

𝑡

𝑡−𝜃−𝜏
𝑒−2𝛿(𝑡−𝑠)|𝐾(𝜃)|𝑥𝑇(𝑠)𝐺𝑥(𝑠)𝑑𝑠𝑑𝜃

𝑉𝐻(𝑡) = ∫  
∞

0
∫  

𝜃+𝜏

0
∫  

𝑡

𝑡−𝜆
𝑒−2𝛿(𝑡−𝑠)|𝐾(𝜃)|𝑥̇𝑇(𝑠)𝐻𝑥̇(𝑠)𝑑𝑠𝑑𝜆𝑑𝜃

  

Where the matrices P, G and H are fixed and positive. 
The sentence VG (t) with δ ≠ 0 develops the classical 
result for the exponential stability mode with δ rate. 
Also, if A is Hertz, this sentence compensates for the 
effect of the delayed sentence in the above system. 
Similarly, the sentence VH (t) extends the result to the 
exponential stability mode with δ rate, and if A0 is Hertz, 
it compensates for the integral sentence in system (9). Of 
course, this sentence can also improve the results for a 
case where A is Hertz. Since the Lyapunov function is 
dependent on x., The primary function must be 
derivative. 
In the following, conditions are extracted that satisfy the 
inequality (12) in order for the system to respond to the 
initial conditions (13). 

(12) 𝑉̇(𝑡) + 2𝛿𝑉(𝑡) ≤ 0 
(13) 𝜙 ∈ 𝐶1(−∞, 0] 

In this case, the stability of the system is guaranteed. 
Therefore, the system response must have condition 
(14). 

(14 ) 𝑥𝑇(𝑡)𝑃𝑥(𝑡) ≤ 𝑉(𝑡)

≤ 𝑒−2𝛿𝑡𝑉(0), 𝑡 ≥ 0 

  Where for all δ∈ (0, δ0) there is a relation (15). 

(15) 𝑉(0) ≤ 𝜆𝑚𝑎𝑥(𝑃)|𝜙(0)|2 + 𝜆𝑚𝑎𝑥(𝐺) ∫  
∞

0
|𝐾(𝜃)|(𝜃 + 𝜏)𝑑𝜃 ∥ 𝜙 ∥𝐶

+𝜆𝑚𝑎𝑥(𝐻) ∫  
∞

0
|𝐾(𝜃)|

(𝜃+𝜏)2

2
𝑑𝜃 ∥ 𝜙̇ ∥𝐶

  

Derived from V in the direction of the relational system 
(16) is obtained. 
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(16) 𝑉̇(𝑡) + 2𝛿𝑉(𝑡) = 2𝑥𝑇(𝑡)𝑃[𝐴𝑥(𝑡) + 𝐴𝑑 ∫  
∞

0
𝐾(𝜃)𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃] +

2𝛿𝑥𝑇(𝑡)𝑃𝑥(𝑡)

+∫  
∞

0
|𝐾(𝜃)|𝑑𝜃𝑥𝑇(𝑡)𝐺𝑥(𝑡) −

∫  
∞

0
𝑒−2𝛿(𝜃+𝜏)|𝐾(𝜃)|𝑥𝑇(𝑡 − 𝜃 − 𝜏)𝐺𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃

+∫  
∞

0
(𝜃 + 𝜏)|𝐾(𝜃)|𝑑𝜃𝑥̇𝑇(𝑡)𝐻𝑥̇(𝑡) −

∫  
∞

0
∫  

𝑡

𝑡−𝜃−𝜏
𝑒−2𝛿(𝜃+𝜏)|𝐾(𝜃)|𝑥̇𝑇(𝑠)𝐻𝑥̇(𝑠)𝑑𝑠𝑑𝜃

  

Assume that definitions (17) and (18) are considered. 

(17 )  
𝐾0𝛿 = ∫  

∞

0

𝑒2𝛿(𝜃+𝜏)|𝐾(𝜃)|𝑑𝜃, 𝐾00

= 𝐾0𝛿|𝛿=0, 
(18 )  

𝐾1𝛿 = ∫  
∞

0

𝑒2𝛿(𝜃+𝜏)|𝐾(𝜃)|(𝜃 + 𝜏)𝑑𝜃, 𝐾10

= 𝐾1𝛿|𝛿=0 

Now, using the Jensen integral inequalities [20], 
equations (19) and (20) are obtained. 

(19) −∫  
∞

0
𝑒−2𝛿(𝜃+𝜏)|𝐾(𝜃)|𝑥𝑇(𝑡 − 𝜃 − 𝜏)𝐺𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃 ≤

−𝐾0𝛿
−1 ∫  

∞

0
𝐾(𝜃)𝑥𝑇(𝑡 − 𝜃 − 𝜏)𝑑𝜃𝐺 ∫  

∞

0
𝐾(𝜃)𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃

  

(20) −∫  
∞

0 ∫  
𝑡

𝑡−𝜃−𝜏
𝑒−2𝛿(𝜃+𝜏)|𝐾(𝜃)|𝑥̇𝑇(𝑠)𝐻𝑥̇(𝑠)𝑑𝑠𝑑𝜃 ≤

−𝐾18
−1 ∫  

∞

0
∫  

𝑡

𝑡−𝜃−𝜏
𝐾(𝜃)𝑥̇𝑇(𝑠)𝑑𝑠𝑑𝜃𝐻 ∫  

∞

0
∫  

𝑡

𝑡−𝜃−𝜏
𝐾(𝜃)𝑥̇(𝑠)𝑑𝑠𝑑𝜃

  

With variable definition (21): 

(21 ) 𝜂(𝑡) = col {𝑥(𝑡), ∫  
∞

0
𝐾(𝜃)𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃}  

A relation (22) can be obtained. 

(22) 
𝑉̇(𝑡) + 2𝛿𝑉(𝑡) ≤ 𝜂𝑇(𝑡) [

Φ00 𝑃𝐴𝑑 + 𝐾18
−1𝐾00𝐻

∗ −𝐾08
−1𝐺 − 𝐾18

−1𝐻
]𝜂(𝑡)

+𝐾10𝜂
𝑇(𝑡) [

𝐴𝑇

𝐴𝑑
𝑇]𝐻 [

𝐴𝑇

𝐴𝑑
𝑇]

𝑇

𝜂(𝑡),

  

That 

(23) Φ00 = 𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛿𝑃 + 𝐾00𝐺 − 𝐾1𝛿
−1𝐾00

2 𝐻 

LMI (24) is obtained by applying saline supplement [21]. 
As a result, the LMI obtained in Equation (24) ensures 
that Equation (25) is established. 

(25 ) 𝑉̇(𝑡) + 2𝛿𝑉 ≤ 0 

 Conclusion: Suppose that certain positive matrices 

𝑃, 𝐺, 𝐻 ∈ ℝ𝑛exist such that LMI (24) holds, in which 

case system (9) with initial conditions 𝜙 ∈
𝐶1(−∞, 0] the exponential stability will be with the 
convergence rate δ. 
A matrix kernel [22] can be considered for system (9). 
However, in this case the numerical solution of 
constants (26) and (27) is complex. 

(26) 
𝐾0𝛿 = ∫  

∞

0

𝑒2𝛿(𝜃+𝜏)|𝐾(𝜃)|𝑑𝜃, 𝐾00 = 𝐾0𝛿|𝛿=0, 

(27) 
𝐾1𝛿 = ∫  

∞

0

𝑒2𝛿(𝜃+𝜏)|𝐾(𝜃)|(𝜃 + 𝜏)𝑑𝜃, 𝐾10 = 𝐾1𝛿|𝛿=0 

For this reason, in proving the exponential stability in 
this paper, a special but important case of matrix kernel 

is considered in which the matrix kernel is considered as 
the sum of scalar kernels. As a result, the system is 
considered as (28). 

(28) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + ∑  𝑚
𝑖=1 𝐴𝑑𝑖 ∫  

∞

0
𝐾𝑖(𝜃)𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃  

If LMI (24) holds for δ = 0, then system (9) is asymptotic 

for 𝐾 ∈ 𝐿1[0,∞) if 𝐾10 < ∞ is the result of the delay 
effect distributed here with only a few integral sentences 
in the stability conditions. Reflected. Such conditions are 
highly conservative because they ignore the details of the 
delay distribution. For the kernel mode with gamma 
distribution [23] which is discussed below, the kernel 
derivative will also be considered to achieve better 
results. 
A simpler Lyapunov function can be used when the 
matrix is A Heroitz. In this case, if the Lyapunov 
function (3) H = 0 is applied in V, LMI (29) is obtained. 

(29) 
[
𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛿𝑃 + 𝐾00𝐺 𝑃𝐴𝑑

∗ −𝐾0𝛿
−1𝐺

] < 0  

As a result, for all system responses with the initial 

function 𝜙 ∈ 𝐶(−∞, 0], LMI (29) ensures that relations 
(30) and (31) are established with H = 0. 

(30) 𝑥𝑇(𝑡)𝑃𝑥(𝑡) ≤ 𝑉(𝑡) ≤ 𝑒−2𝛿𝑡𝑉(0), 𝑡 ≥ 0 
(31) 

𝑉(0) ≤ 𝜆𝑚𝑎𝑥(𝑃)|𝜙(0)|2 + 𝜆𝑚𝑎𝑥(𝐺)∫  
∞

0

|𝐾(𝜃)|(𝜃 + 𝜏)𝑑𝜃 ∥ 𝜙 ∥𝐶

+𝜆𝑚𝑎𝑥(𝐻)∫  
∞

0

|𝐾(𝜃)|
(𝜃 + 𝜏)2

2
𝑑𝜃 ∥ 𝜙̇ ∥𝐶 .

 

It can easily be seen that for δ = 0 LMI (29) is a sufficient 
condition independent of the delay for the system (32) 
for r≥0. 

(32 ) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) ± 𝐾00𝐴𝑑𝑥(𝑡 − 𝑟) 

The following three items can also be guaranteed: 

1) The matrices A and A ± K_00 Ad are Hertz (in other 
words, for K≥0 the matrix is A0 Hertz). 
2) The eigenvalues of the matrix (33) are inside a single 
circle. 

(33 ) 
𝐴−1𝐾00𝐴𝑑 = 𝐴−1 ∫  

∞

0

|𝐾(𝑠)|𝑑𝑠𝐴𝑑  

3) The Scaled Small Gain Theorem [24] (34) is 
established. 

(34 ) ∥∥𝐺0.5(𝑠𝐼 − 𝐴)−1𝐴𝑑𝐺−0.5∥∥∞
< 1/𝐾00  

For δ = 0, Ad = G = I and a matrix K, LMI (29) is 
equivalent to inequality (35). 

(35 ) ∥∥(𝑠𝐼 − 𝐴)−1∥∥∞
< 1/𝐾00 

This inequality is extracted in the references for the 
limited delay mode. The result can be easily extended to 
systems with multiple latency and scalar kernels. 
Theorem: Consider the system given in Equation (28). 
Suppose there exists a δ0> 0 such that the relations (35) 
and (36) are established and A0 is Hertz. 

(24) 
[

Φ00 𝑃𝐴𝑑 + 𝐾18
−1𝐾00𝐻 𝐾10𝐴

𝑇𝐻

∗ −𝐾0𝛿
−1𝐺 − 𝐾18

−1𝐻 𝐾10𝐴𝑑
𝑇𝐻

∗ ∗ −𝐾10𝐻

] < 0 
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(35 ) ∥∥(𝑠𝐼 − 𝐴)−1∥∥∞
< 1/𝐾00 (36 ) 𝐴0 = 𝐴 + ∑  𝑚

𝑖=1 𝐴𝑑𝑖 ∫  
∞

0
𝐾𝑖(𝜃)𝑑𝜃  

 

Given 𝛿 ∈ (0, 𝛿0) (δ = 0), assume that the definite 

positive matrices 𝑃, 𝐺𝑖 , 𝐻𝑖 ∈ ℝ𝑛×𝑛are such that LMI 
(37) with details (38) Be established. 

(37) 

[
 
 
 
 
 
Φ00 Φ01 … Φ0𝑖 𝐴𝑇(∑  𝑚

𝑖=1 𝐾10
𝑖 𝐻𝑖)

∗ Φ11 … 0 𝐴𝑑1
𝑇 (∑  𝑚

𝑖=1 𝐾10
𝑖 𝐻𝑖)

⋮ ⋮ ⋱ ⋮ ⋮
∗ ∗ ∗ Φ𝑚𝑚 𝐴𝑑𝑚

𝑇 (∑  𝑚
𝑖=1 𝐾10

𝑖 𝐻𝑖)

∗ ∗ ∗ ∗ −∑  𝑚
𝑖=1 𝐾10

𝑖 𝐻𝑖 ]
 
 
 
 
 

< 0  

(38) 𝐾0𝛿
𝑖 = ∫  

∞

0
𝑒2𝛿(𝜃+𝜏)|𝐾𝑖(𝜃)|𝑑𝜃,𝐾00

𝑖 = 𝐾0𝛿
𝑖 |

𝛿=0
,

𝐾18
𝑖 = ∫  

∞

0
𝑒2𝛿(𝜃+𝜏)|𝐾𝑖(𝜃)|(𝜃 + 𝜏)𝑑𝜃, 𝐾10

𝑖 = 𝐾1𝛿
𝑖 |

𝛿=0
,

Φ00 = 𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛿𝑃 + ∑  𝑚
𝑖=1 [𝐾00

𝑖 𝐺𝑖 − (𝐾18
𝑖 )

−1
(𝐾00

𝑖 )
2
𝐻𝑖]

Φ0𝑖 = 𝑃𝐴𝑑𝑖 + (𝐾1𝛿
𝑖 )

−1
𝐾00

𝑖 𝐻𝑖, Φ𝑖𝑖 = −(𝐾0𝛿
𝑖 )

−1
𝐺𝑖 − (𝐾1𝛿

𝑖 )
−1

𝐻𝑖.

  

L2 and ISS interest rate analysis Disturbed systems are 
two other simple extensions of the Lyaponov-Krasovsky 
method, where the L_2 interest rate of the system will be 
analyzed. Consider the turbulent version of the previous 
system by Equation (39). 

(39) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐴𝑑 ∫  
∞

0
𝐾(𝜃)𝑥(𝑡 − 𝜃 − 𝜏)𝑑𝜃 + 𝐵𝑤(𝑡),

𝑧(𝑡) = 𝐶𝑥(𝑡),
  

Where w(t) ∈ ℝnw are perturbation vectors, z(t) ∈
ℝnz  are controlled outputs, and B and C are fixed 

matrices. The L2 gain of a high system is said to be less 
than γ> 0 if there is a relation (40) for the initial zero 
conditions of the system. 

(40) 𝐽 = ∫  
∞

0
[𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡)]𝑑𝑡 < 0, 

0 ≠ 𝑤 ∈ 𝐿2[0, ∞)  

For an inequality δ> 0 (40) guarantees that J <0 and is 
therefore an internal exponential stability system. 
By standard calculations, we can see that W (t) ≤0 and 
therefore J <0 hold if LMI (41) holds. 

(41) 

[
 
 
 
Φ00 + 𝐶𝑇𝐶 𝑃𝐴𝑑 + 𝐾18

−1𝐾00𝐻 𝑃𝐵 𝐾10𝐴
𝑇𝐻

∗ −𝐾0𝛿
−1𝐺 − 𝐾1𝛿

−1𝐻 0 𝐾10𝐴𝑑
𝑇𝐻

∗ ∗ −𝛾2𝐼 𝐾10𝐵
𝑇𝐻

∗ ∗ ∗ −𝐾10𝐻 ]
 
 
 

<

0,  
Φ00 = 𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛿𝑃 + 𝐾00𝐺 − 𝐾18

−1𝐾00
2 𝐻  

Simulation 

Consider the BOT system mentioned in the second part 
of the paper with the non-Hurwitz A matrix and the 
kernel matrix (42). 

(42 ) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + ∫  
ℎ

0
𝐾(𝜃)𝑥(𝑡 − 𝜃)𝑑𝜃

𝐴 = [
0.2 0.01
0 −2

] ,𝐾(𝜃) = [
−1 − 0.3𝜃 0.1

0 −0.1
]

  

System (42) with 𝑚 = 2,   𝜏 = 0,   𝐾1 = 𝐾2 =
0 𝑓𝑜𝑟 𝜃 > ℎ can be written as (43) in different ways. 

(43) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + ∫  
ℎ

0
𝐾(𝜃)𝑥(𝑡 − 𝜃)𝑑𝜃

𝐴 = [
0.2 0.01
0 −2

] , 𝐾(𝜃) = [
−1 − 0.3𝜃 0.1

0 −0.1
]

  

Here, two forms (44) and (45) can be considered for the 
mentioned system. 

(44) 
𝐴𝑑1 = [

−1 0.1
0 −0.1

] , 𝐴𝑑2 = −[
0.3 0
0 0

]

𝐾1 ≡ 1,𝐾2(𝜃) = 𝜃, 𝜃 ∈ [0, ℎ]
  

(45) 𝐴𝑑1 = [
0 0.1
0 −0.1

] , 𝐴𝑑2 = −[
1 0
0 0

]

𝐾1 ≡ 1,𝐾2(𝜃) = 1 + 0.3𝜃, 𝜃 ∈ [0, ℎ]
  

Therefore, assuming equation (46) for the general 
system: 

(46 ) 𝐴0 = 𝐴 + ∑  2
𝑖=1 𝐴𝑑𝑖 ∫  

∞

0
𝐾𝑖(𝜃)𝑑𝜃  

In this system for h≥0.195 the matrix is A0 Hurwitz. In 
the reference [25], using an analytical method, the delay 

interval for the asymptotic stability of the system h∈ 
[0.195,1.71] is obtained, while with the LMIs concluded 
in this paper with 15 scalar variables, the exponential 

stability of the system with the model ( 45) for h∈ 

[0.207,1.455] and with model (46) for h∈ [0.195,1.442]. 

Thus the system is exponentially stable for h∈ 
[0.195,1.455]. 
Assuming h = 1, it is observed that they can be solved 
by the existing LMIs with 15 decision variables 
maximum for the convergence rate δmax = 0.433 with 
model (44) and δmax = 0.593 with model (45). Therefore, 
the system is exponentially stable with a convergence 
rate of 0.593. Also note that the system in this example 
has a triangular structure. It is therefore stable if the two 
scalar systems (47) and (48) are stable. 

(47) 𝑥̇1(𝑡) = 0.2𝑥1(𝑡) − ∫  
0

−ℎ
(1 − 0.3𝑠)𝑥1(𝑡 + 𝑠)𝑑𝑠  

(48) 𝑥̇2(𝑡) = −2𝑥2(𝑡) − 0.1 ∫  
0

−ℎ
𝑥2(𝑡 + 𝑠)𝑑𝑠  

Corresponding to models (47) and (48), the model for x1 
can be expressed as a system with two delays as (49). 

(49 ) 𝐴𝑑1 = −1 = −𝐾1(𝜃) and 

𝐴𝑑2 = −0.3, 𝐾2(𝜃) = 𝜃  

Or model with a system with only one delay as (50). 

(50 ) 𝐴𝑑 = −1 and 𝐾(𝜃)
= 1 + 0.3𝜃(𝜃 ∈ [0, ℎ]) 
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The LMIs obtained in this paper with 5 and 3 scalar 
variables ensure the exponential stability of the system 

for h∈ [0.207,1.455] and h∈ [0.195,1.442], respectively. 
Consider the BOT system mentioned in the second 
section with parameters (51). 

(51 ) 𝐴 = 0.8, 𝐴𝑑 = −41.8, 𝐵 = 2, 𝐶 = 1
𝐾(𝜃) = 0 for 𝜃 > ℎ

, 𝐾(𝜃) =
3+20𝜃+700𝜃2

2−20𝜃+800𝜃2
 for 𝜃 ∈ [0, ℎ]

  

In this system for h> 0.011659 we have A0 <0. For h = 
0.1, the minimum value of L2 of the system in the 
reference [26] is calculated to be 0.76, while using the 
LMI obtained in this paper, the lowest value of L2 of the 
system is 0.3223. 
Now if we consider the same system with infinite delay 

and assume that the scalar kernel 𝐾 ∈ 𝐿1[0,∞) is given 
with relation (52). 

(52) 𝐾(𝜃) =
3+20𝜃+700𝜃2

2−20𝜃+800𝜃2 𝑒−10𝜃 for 𝜃 ∈ [0, ∞)  

In this case, by solving the obtained LMI, the minimum 
value of L2 of the system is equal to γmin = 0.41. 

Conclusion 

In this paper, using the simulation method by Lyapunov 
function, it is shown that the proposed method of scalar 
kernel matrix for designing the optimal path of BOT 
problem can be calculated with a unique control 
function independent of the initial unknown parameters. 
Movable was evaluated by maneuver. Utilizing high 
accuracy of control methods of delayed systems with 
infinitely distributed delays in initial modeling with 
utilization of stabilization methods and L2 gain analysis 
due to high stability to unknown parameters and 
increasing the solution speed to solve the complexity of 
the solution is the main feature of this method. Another 
advantage of designing a route with the desired pursuit 
and approach is at the beginning of the maneuver. In 
addition, high convergence, speed and low 
computational volume (compared to other methods) 
were shown in BOT application problems. Although 
convergence time can be calculated in error-free 
measurement mode, despite the significant 
measurement error, the minimum time in this study has 
been calculated from simulation. Future research in this 
area includes calculating the optimal time for the desired 
convergence commensurate with the sensitive 
measurement error to ensure the online convergence of 
the BOT problem. Also, the study of the performance 
of the proposed method for maneuverable targets and 
finding quick adaptive criteria appropriate to the 
functions of sustainability criteria for the convergence of 
maneuverable target estimators is considered in further 
research. 
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